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Abstract. In this paper we study and characterize the structure of the linear transformations which 
preserve P-convex sets. 
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Introduction 

The main objectives of research on generalized convexity are to prove conver- 
gence of algorithms to find the global minimum of non-convex problems, and to 
characterize functions which possess only global minima. However, from an 
economic point of view, a useful generalization of convexity must fulfil two 
requirements. First, and foremost, it must admit a rich class of economic models. 
Second, it must be tractable for analysis, i.e., it must have some useful 
mathematical structure. 

In recent papers First, Hackman and Passy introduced and studied the new 
concept of P-convex set as a natural extension of classical convexity (see [1], [2], 
[3] and [4]). This concept is not only potentially rich from the applications point 
of view (it admits a large class of economical models), but it has consistent 
mathematical structure too. For instance, for P-convex sets the following 
separation property holds: a point not in a closed P-convex set can be separated 
by a quadrant, which is an intersection of closed half-spaces generated by 
orthogonal hyperplanes. As another example, the gradient of a differentiable 
P-concave function (if non-zero) generates a supporting quadrant to boundary 
points of the level sets. Nevertheless, unlike convex sets, P-convex sets turn out 
not to be invariant with respect to the general linear transformations of the 
Euclidean space they are immersed in. 

In this paper we study and characterize the structure of the affine nonsingular 
maps with the property of preserving P-convex sets, that is the image under such a 
transformation of a P-convex set is still P-convex with respect to the previous 
decomposition of the space. As a consequence, we provide a large number of 
linear transformations that preserve the class of P-convex functions. 

Notation 

Throughout this paper we shall denote by X, Y, X i finite-dimensional Euclidean 
spaces, by n the dimension of X, by ni the dimension of X i. A path in X is a not 
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necessarily continuous map H: [0, 1]---> X. If x, y are elements of X, then Ix, y] 
denotes the segment joining x with y. If x, y belong to X, then X =  IIim~ X/, 
x = (x 1, x 2, . . . ,  Xm), y = (Yl, YZ, " " ", Ym) denotes the rectangle with vertices x 
and y and defined by 

ex,y ~ - "  [Xl' Yt] x [x2, Yz]  x . . . x [ x m ,  y , , ]  = f i  [ x i ,  Yi] 
i = l  

(here [x~, y~] will denote the segment in X~ with end-points x,., yi.) ~r i will denote 
the i-th projection of X onto X~. We define in X the quadrant Q(a) generated by a 
of X as follows 

Q(a) = { x E X :  aixi>~O, i= 1,2 . . . . .  m } ,  

where a~x i denotes the usual inner product in X i. 
If C is a subset of X, the symbols C ~ C and C c denote, respectively, the 

interior, the closure and the complement of C in X. 
We shall denote by M(n, R) the set of the square matrices of dimension n, and 

by GL(n, R) the subset of M(n, R) of the non-singular matrices. 

1. Definitions and Preliminary Results 

Let X = Yli%l X i and fix this decomposition of X as a direct product of Euclidean 
spaces once for all; a point x which belongs to X is singled out by the 
m-tuple ( X l , X 2 , . . . , X m )  where x i E X  i. Recall that a set CC_X is said to be 
convex if for every x, y ~ C we have that Ax + (1 - A)y E C, VA E [0, 1]. 

It is possible to generalize (see [1]) the concept of convexity in the following 
way. 

DEFINITION 1.1. Let C be a subset of X. C is said to be P-convex if for every 
x, y E C ,  for every i ( i=  1,2 . . . .  ,m)  and for every h E [ 0 , 1 ] ,  there exists 
)tj E [0, 1], j ~ i such that the point with coordinates hjxj + (1 - hj)yj if j ~ i and 
hx i + (1 - h)yi if ] = i belongs to Q Notice that the definition of P-convex set is 
strictly related to the decomposition of the space X into the direct product 
n~ml X/. 

The concept of P-convexity can be as well formulated as follows: for every 
couple of points x, y E C and for every index i (i = 1, 2 , . . . ,  m), there exists a 
path II from x to y such that its image is contained in Rx,y fq C and such that the 
projection 7rg(II) is exactly the segment [x~, Yi]. 

In the special case where C is a closed subset of X, then Hackman and Passy 
stated the following 

PROPOSITION 1.2. Let C be a P-convex set; then, for every point x @ aC there 
exists a support quadrant Q(a) + x, that is a quadrant such that 
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(Q(a) + x) 71C ~ = ~l . 

In particular, a P-convex closed set is the intersection of the sets which are 
complements of quadrants containing it. The condition expressed by proposition 

1.2 cannot be reversed. 

E X A M P L E .  Let  X = R x R, a = (1, 1), b = ( - 1 ,  1). The closed set C = [0, a] U 
[0, b] is not P-convex, but there exists for every point at least one support 

quadrant.  

Let  now f :  X--->R. 

D E F I N I T I O N  1.3. f is said to be P-convex (P-concave) on X if the lower level 

sets (upper level sets) are P-convex. 

2. Invariance under Linear Transformations 

Let  X = IIi% 1X i, dim X = n. Recall that any transformation of the group M(n, R) 
preserves convex sets of X (the proof of that the property follows directly from 
the definition of convex set). Indeed, if x, y are points in the convex set C, we 
have [x, y] C C. Let  T E M(n, R); since T is linear, then T[x, y] = [Tx, Ty] C_ TC, 
which is the thesis. Let  us consider now the P-convex set C C X. Let  T E GL(n). 
We put the following questions: 
(i) is the set 

r - l c  = ( y E X :  y = r - l x ,  x E C }  

P-convex? 
(ii) which kinds of transformations T E GL(n, R) do preserve the P-convexity of 
a set? 

The answer to the first question is negative. Indeed it is enough to consider in 
X =  R x R the P-convex set C = QC, with Q = Q(1, 1). Assume that T is the 
matrix 

sin0 cos0]  
- c o s  0 sin 0 / '  

that is a rotation characterized by an angle 0, with 0 ~ k~r/2, k E Z; it can be 
immediately verified that the set TC is not P-convex. 

We shall see in the sequel that the linear transformations persevering P- 
convexity are comparatively few. We shall prove the following. 

T H E O R E M  2.1. Let T E GL(n, R). Therefore T preserves the P-convex sets of X 
if and only if there exists a one-to-one transformation ~ of the set {1, 2 , . . .  , m} 
such that 

T ( X , )  = 
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f o r  every i = 1, 2 , . . . ,  m.  In particular n i = n~( 0 

To proceed we need some technical lemmata. 

L E M M A  2.2. Le t  T E G L ( n , R ) ,  T = T  1 G T  2 0 ' ' ' G T  m, T i ~ O ( n i ) .  Then T 

preserves the P-convex subsets o f  X .  

Proof.  It suffices to show that for all x, y E X we have 

TRx,y = R T x , T y  �9 

Set x = ( x i , .  . .  , X m ) ,  Y = ( Y l , "  �9 �9 , Ym)" We have 

Tx = (TlX ~ . . . . .  Tmxm), Ty = (T,  y l ,  . . . , TmYm) , "lri(Tx ) = T~x~, 

75(Ty ) = T~y i . 

Since T,. and 7r i commute, then 

Rr~,Ty = [Tr,(Tx), "h-l(TY)] •  • ['n'm(TX), 7rm(Ty)] 

= r ( [ ~ r i x  , ~-ly] x . . .  x [%x, %y])  

= TRx,y �9 

which gives the thesis. [] 

L E M M A  2.3. Le t  T E G L ( n ,  R )  and assume that there exists a transformation a 

o f  the set {1, 2 , . . . ,  m} such that 

T X i = X ~ (  O,  i = l , 2 , . . . , m .  

Then T preserves the P-convex subsets. 

Proof.  It is a trivial generalization of the proof above. [] 

i n i From now on we denote by {ek}k= 1 the canonical basis of the space X i, and by 
~'k(t) the hyperplane of X defined by the equation Xk = t, t E R. 

L E M M A  2.4. I f  a, b i i @ ~re(t), then the rectangle Ra,  b is contained in ~ ( t ) .  
m i = b  i Proof.  Ra, b =IIi= 1 [a i, bl]. Since a k k = t, we get 

[a~,bi] = U {Aa~ + ( 1 -  h)bil . . . .  , t , . . . ,  Aa~ + ( l 'A)b~m},  
x~[o,l] 

that is to say Ra,  b C Irik(t) . [] 

Identify in a natural way a point a in X~ with the point of X ,  x = 

(0, 0 . . . .  ,0,  a, 0 , . . . ,  0) (a is in the i-th position), and denote by X T the set of 
points with i-th coordinate equal to zero. 
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R E M A R K  2.5. Let  a E Xi, b E X i  L . Then the set C = [0, a] U [0, b] is a P-convex 
subset of X. 

P R O P O S I T I O N  2.6. Let T E GL(n,  R)  be a linear transformation preserving the 
P-convex sets o f  X.  Therefore one and only one o f  the following properties holds: 
T X  i = X i or T X  i C_ X;-,  for  all i = 1, 2 , . . .  , m. 

Proof. Assume that i = 1 and T X  a # X1,  and that there exist indices i, k and 
t # 0 such that 

i T X  l u l r k ( t  ) # ~ ,  TX~ n r r i k ( t ) # ~ ;  

i let a # O, a E TX 1 n ~-k(t), b # O, b ~ TXi L n ~rf(t). Consider the set C defined as 
follows 

C = [0, T-la]  U [0, T - l b l  . 

C is a P-convex subset of X since T - l a  E X 1 ,  T - l b  E X ~  (see 2.5); on the other 
hand we have that 

TC = [0, a] U [0, b] 

therefore  TC is not P-convex since 

R,, b n TC = {a,b } . 

(see (2.4)). We can conclude that there are not indices i, k and t # 0 satisfying the 
conditions above. Notice that if i r ) n T X  1 # 0 for some t # 0 then, by linearity, 
rr~(t) n T X  1 # f~ for every t E R. Define the sets N1, N 2 in the following way: 

N , = { ( i , k ) :  i r ) n TX,  = O, t # 0} 

N z = { ( i , k ) :  i 7rk(t ) n TX~ = O, t # 0} .  

N 1 and N 2 are disjoint; moreover ,  if (i, k ) E N 1 ,  from the fact that 

r ) = X ,  T X  i n  Irk(t = 0 ,  
t ~ R  

i we get the inclusion TX1 C_ ~-k(0). In the same way TX~ C_ cry(0) if (i, k) E N 2. 
We can write that 

T X  1 C n i ~k(O) 
( i , k ) E N  1 

TX~C_ n i ~rk(O) 
( i , k )EN  2 

By an obvious dimensional computation, we can conclude that in both cases the 
strict equality holds. 

Since, by the hypothesis, T X ~ # X 1 ,  there exists h such that (1, h ) E N a ;  
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moreover, if T X I ~ _ X  ~, there is l such that (1, I ) E N  2. Denote by C the 
following set 

C = [0, T - l e  1] U [0, T- l e ) ] .  

C is P-convex in X,  but the image of C under T, TC, which coincides with 
[0, e~] U [0, e~], is not P-convex since 

1 1 
Relh,e] n TC = {eh, e t } . 

Hence T X  1 ~ X 1 ~ TX 1 C_ X (  . [] 

PROPOSITION 2.7. Let T E GL(n, R)  be a linear transformation of X preserving 
P-convexity. Then there exists a transformation a of (1, 2 . . . . .  m)  such that 

TXi = X~( O, i = l , 2 , . . . , m  

with n i = ha(i) . 

Proof. Assume, by simplicity,that the following relation holds: n I ~< n z <~. �9 .n m . 
Our proof is absurd. Assume TX 1 ~ Xi for every i = 1, 2 , . . . ,  m. Therefore, (see 
Prop. 2.6) we have that T X 1 C _ X z •  3 x . . .  •  Since nl<~ni for every i, 
there exist (i, h) E N1, (i, l) E N 2 such that the set C = [0, T-leh] U [0, T-lel] is 
P-convex whereas TC is not, contradicting the hypothesis. We can conclude that 
there exists a(1) such that TX~ =X~(1). In a similar way we work with 

X 2 , X 3 , . . .  , X  m �9 [] 

Proof of  Theorem 2.1. It follows immediately from (2.3) and (2.7). [] 

C O R O L L A R Y  2.8. I f  f(x) is a P-convex function, and if T is a linear transforma- 
tion satisfying the assumptions of  Theorem 2.1, then the function f (Tx)  is P- 
convex; in particular, its true local minima are global minima. 
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